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Abstract

The zero curvature representations, Bäcklund transformations, nonlinear
superposition principle and the simplest explicit solutions of soliton and
breather type are presented for two vector generalizations of modified Volterra
lattice. The relations with some other integrable equations are established.
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1. Introduction

Vector equations are an important and rather well-studied class of integrable systems. In
this area, we mention only a few works [1–3] containing the examples and classification
results for the vectorial systems of derivative nonlinear Schrödinger type which are in some
relation to the theme of our paper. There are also several interesting results for the vector
differential–difference equations, or lattices, see e.g. [4, 5], but this field seems less investigated.
The aim of our work is the study of the vector lattices

Vn,x = 2〈Vn, Vn+1 − Vn−1〉Vn − 〈Vn, Vn〉(Vn+1 − Vn−1), (1)

Vn,x = 〈Vn, Vn〉(Vn+1 − Vn−1), (2)

which define two integrable generalizations of the very well-known modified Volterra lattice.
Equation (1) was introduced in [6] among the other examples of the multi-component lattices
related to Jordan algebraic structures. Equation (2) was introduced in [7] under the name of
generalized equation of nonlinear filters for the case of two-dimensional vectors and in [8, 9]
for the vectors of arbitrary dimension.

The main tool in the study of a nonlinear integrable equation is its representation as the
compatibility condition for auxiliary linear systems. In the differential–difference setting this
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method was developed in the classical papers [10, 11]. In our paper we restrict ourselves to the
version of dressing method based on Darboux–Bäcklund transformations and their nonlinear
superposition principle. Bäcklund transformations for scalar Volterra and modified Volterra
lattices were studied by many authors, see e.g. [12–14]. The summary of the main results
for the scalar case is given in section 2. The main body of the paper, sections 3, 4, contains
generalizations of this method for both vector lattices (1) and (2), as well as the simplest
explicit solutions of soliton and breather type. The comparison with the results obtained in
[15] for the lattice (2) is given.

A characteristic feature of integrability is the consistency of the equation with an infinite
hierarchy of other equations. In particular, Bäcklund transformations define the discrete part
of this hierarchy and lead to the discrete equations on the square grid. Usually, one starts this
way from the continuous equations of KdV type, however an understanding appeared recently
that the lattice equations of Volterra type lead to the same result as well [16–18]. This relation
has not yet been observed in the vector case, although the discrete equation related to the
lattice (1) has been introduced in the paper [19], see also [20–22].

The continuous part of the picture (section 5) is more traditional. It was observed in the
works of Levi [23] and Shabat, Yamilov [24] that integrable Volterra-type lattices define a
special kind of Bäcklund transformation for equations of nonlinear Schrödinger type. This
remains valid for the vector analogs as well. The connection with a two-dimensional lattice
relative to the Volterra lattice introduced by Mikhailov [25] is of interest, too. Finally, it
should be noted that the approach based on the continuous symmetries is the most effective
one in the classification problem of integrable equations, both continuous and discrete [26].
The complete classification of scalar Volterra-type lattices was obtained by Yamilov [27] by
the use of the symmetry approach, see also [28, 29]. Some progress in the classification of
vector equations and lattices has been achieved recently [3, 30–32]. We discuss some open
problems in this field in section 6.

2. Scalar case

2.1. Zero curvature representations

The following notations for the auxiliary linear equations are used throughout the paper:

�n+1 = Ln�n, �n,x = An�n, �̃n = Mn�n. (3)

The modified Volterra lattice

vn,x = (
v2

n + a
)
(vn+1 − vn−1) (4)

is equivalent to the compatibility condition Ln,x = An+1Ln − LnAn with the matrices

Ln =
(

a
λ

vn

−vn λ

)
, An =

(
a2

λ2 + vn−1vn
a
λ
vn + λvn−1

− a
λ
vn−1 − λvn λ2 + vn−1vn

)
. (5)

The Darboux–Bäcklund transformation is defined by the matrix

Mn = 1

a + μ2f 2
n

(
μ(a2 − μ2λ2) − aμ(λ2 − μ2)f 2

n −(a2 − μ4)λfn

(a2 − μ4)λfn aμ(λ2 − μ2) − μ(a2 − μ2λ2)f 2
n

)
.

(6)

Moreover, the compatibility condition L̃nMn = Mn+1Ln is equivalent to the pair of discrete
Riccati equations for the variable fn:

vn = μfn+1 − afn/μ

1 + fnfn+1
, ṽn = μfn − afn+1/μ

1 + fnfn+1
(7)
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Figure 1. Breather of the lattice (4); a = 1, γ
(1)
1 = γ̄

(2)
1 = 0.5 + 1.5i, k(1) = k(2) = 1.

and the condition Mn,x = ÃnMn − MnAn completes this system with the continuous Riccati
equation

fn,x =
(

a

μ
vn−1 + μvn

)
f 2

n +

(
a2

μ2
− μ2

)
fn + μvn−1 +

a

μ
vn. (8)

Note also that the variable fn satisfies, in virtue of equations (7) and (8), the lattice

fn,x =
(
μ2 + af 2

n

)(
a + μ2f 2

n

)
(fn+1 − fn−1)

μ2(1 + fn+1fn)(1 + fnfn−1)
. (9)

Starting from a known solution vn of the lattice (4) the common solution of the first
equations (7) and (8) is constructed by the formula fn = φn/ϕn where � = (φ, ϕ) is a
particular solution of two first equations (3) at λ = μ. Then the second equation (7) defines
the new solution ṽn.

For example, in order to construct solutions of soliton type one takes vn = 1 as the seed
solution (obviously, the choice of another constant is equivalent to scaling of parameter a;
some generalization can be achieved via dressing of the solution v2n = α, v2n+1 = β). The
eigenvalues of the matrix Ln|vn=1,λ=μ are defined from the equations

γ1 + γ2 = μ + a/μ, γ1γ2 = 1 + a

and the corresponding solution of the linear equations is

ϕn = γ n
1 e(γ 2

1 +2)x + kγ n
2 e(γ 2

2 +2)x, φn = μϕn − ϕn+1

3
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(we do not consider the case of multiple roots γ1 = γ2 which leads to rational in n, x

solutions). The ratio fn = φn/ϕn defines the solution of the lattice (9) of kink type (provided
γ1/γ2 > 0, k > 0) and the substitution into the second equation (7) gives the soliton of
the lattice (4). The construction of N-soliton solution uses the set of particular solutions(
φ

(j)
n , ϕ

(j)
n

)
corresponding to the values of parameters μ(j), k(j), j = 1, . . . , N . If a > 0 then

the lattice (4) admits the breather solutions corresponding to the pairs of complex conjugated
points in the discrete spectrum (μ(1) = μ̄(2), k(1) = k̄(2)), see figure 1.

2.2. Nonlinear superposition principle

The direct recomputing of the variables f is a more convenient way to iterate the Darboux
transformation than applying the matrices M and recomputing the wavefunctions. This leads
to the nonlinear superposition principle of Darboux transformations in the form of some
Yang–Baxter mapping [33]. Let the variables f

(j)
n be constructed from the particular solutions

of the linear systems at μ = μ(j), and let f
(j,j1,...,js )
n denote the variables obtained from

f
(j)
n by consecutive applications of Darboux transforms with parameters μ(j1), . . . , μ(js ). The

permutability of Darboux transformations means that the order of all superscripts except for
the first one is not essential and implies the following equality for the matrices of the form (6):

M
(
f (j,k,σ )

n , μ(j)
)
M

(
f (k,σ )

n , μ(k)
) = M

(
f (k,j,σ )

n , μ(k)
)
M

(
f (j,σ )

n , μ(j)
)
,

where σ stands for a tail sequence of distinct indices. This equation is uniquely solvable with
respect to f

(j,k,σ )
n , f

(k,j,σ )
n and thus the mapping is defined(

f
(j,σ )
n

f
(k,σ )
n

)
�→

(
f

(j,k,σ )
n

f
(k,j,σ )
n

)
=

(
R(f

(j,σ )
n , f (k,σ )

n ;μ(j), μ(k))

R(f
(k,σ )
n , f

(j,σ )
n ;μ(k), μ(j))

)
,

R(f, g; μ, ν) = μν3(νg − μf ) − aν(μ2 − ν2)fg2 − a2(μg − νf )

μν3(μg − νf )g + aν(μ2 − ν2) − a2(νg − μf )g
.

(10)

The direct check proves that the quantity f
(j,j1,...,js )
n obtained recursively from f

(j)
n , f

(j1)
n ,

. . . , f
(js )
n is indeed independent of the order of j1, . . . , jn (this property is equivalent to the

Yang–Baxter equation).
Another formulation of the nonlinear superposition principle brings to a discrete 4-point

equation on the square grid for some new variable z
(j,k)
n (the subscript corresponds to the shift

in the Volterra lattice and is dummy, superscripts enumerate the Darboux transformations).
This equation is not too convenient for the purpose of the vector generalizations which we
have in mind, however it is of interest by itself and we spend some space to describe it. The
form of the equation depends on the sign of a.

In the simplest case a = 0 equations (7) imply the relation
μ

ṽn

− μ

vn−1
= fn+1 − fn−1

which allows us to introduce the variable zn according to the equations

fn = μ(z̃n − zn−1), 1/vn = zn+1 − zn−1.

This change turns the relations (7) into a single equation

(z̃n+1 − zn)(zn+1 − z̃n) = μ−2,

which defines Darboux transformation in terms of the variable z. Now, consider another
Darboux transformation corresponding to the value λ = ν:

(ẑn+1 − zn)(zn+1 − ẑn) = ν−2.

4
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The easy calculation proves that the double Darboux transformations coincide: ˆ̃zn = ˜̂zn and
moreover, the common value is given by the superposition formula

( ˆ̃zn − zn)(ẑn − z̃n) = μ−2 − ν−2.

In other words, the Darboux transformations and the superposition formula form the triple
which is 3D-consistent, or consistent around a cube [34]. The iterations of Darboux
transformation bring to the discrete equation on the square grid (with fixed subscript)(

z(j+1,k+1)
n − z(j,k)

n

)(
z(j,k+1)
n − z(j+1,k)

n

) = (μ(j))−2 − (ν(k))−2. (11)

This is a very well-known 3D-consistent equation which defines as well the nonlinear
superposition principle of the classical Darboux transformation for the Schrödinger operator.
This coincidence is not too surprising since it is known for long that Volterra-type lattices
are symmetries of the dressing chains which define Bäcklund transformations for KdV-type
equations (this relation was discussed, from the different points of view, e.g. in [16–18, 24]).

Analogously, in the case a = −c2 the variable zn is introduced according to the formulae

fn = μ(z̃n + zn−1)

c(z̃n − zn−1)
, vn = c

zn+1 + zn−1

zn+1 − zn−1
.

After this the relations (7) turn into the equation

a(z̃n+1 − zn)(zn+1 − z̃n) = −μ2(z̃n+1 + zn)(zn+1 + z̃n),

and (11) is replaced by the equation

r(μ(j))
(
z(j,k)
n z(j,k+1)

n + z(j+1,k)
n z(j+1,k+1)

n

) = r(ν(k))
(
z(j,k)
n z(j+1,k)

n + z(j,k+1)
n z(j+1,k+1)

n

)
, (12)

where r(λ) = (λ2 − a)/(λ2 + a), which is equivalent to the nonlinear superposition principle
for the sinh-Gordon equation.

Finally, if a = c2 then the change

fn = μ(1 + zn−1z̃n)

c(zn−1 − z̃n)
, vn = c

1 + zn+1zn−1

zn+1 − zn−1

is used which brings equations (7) to the form

a(z̃n+1 − zn)(zn+1 − z̃n) = μ2(1 + z̃n+1zn)(1 + zn+1z̃n)

and leads to the equation

(r(μ(j)) + r(ν(j)))
(
z(j,k+1)
n − z(j+1,k)

n

)(
z(j,k)
n − z(j+1,k+1)

n

)
= (r(μ(j)) − r(ν(j)))

(
1 + z(j,k+1)

n z(j+1,k)
n

)(
1 + z(j,k)

n z(j+1,k+1)
n

)
(13)

equivalent to the nonlinear superposition principle for the sine-Gordon equation. Equation (12)
turns into (13) under the complex change z → (i − z)/(i + z), so that these equations are two
different real forms of one and the same equation.

Concluding this section, we note that an analogous construction scheme exists also for
solutions of the Volterra lattice

un,x = un(un+1 − un−1).

The corresponding formulae are even much simpler, for example the equations

un = (vn − μ)(vn+1 + μ), ũn = (vn+1 − μ)(vn + μ)

replace (7) while the role of the lattice (9) is played by the lattice (4) at a = −μ2. Therefore,
the lattice (9) is actually the second modification of Volterra lattice. This sequence is analogous
to the sequence of equations KdV → mKdV → exp-CD (exponential Calogero–Degasperis
equation) which can be obtained by continuous limit from the lattices under consideration.
Unfortunately, although the Volterra lattice admits some multi-component generalizations
[7, 35], the vector ones are absent, this is why we have started from the more complicated
object.

5
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3. First vector generalization

Sometimes the zero curvature representation for a vector generalization can be obtained just
by passing to the block matrices. Unfortunately, this is not the case for the matrices (5) and
(6). It turns out, however, that such block generalization is easy if one considers the linear
equations for the three-dimensional vector with the components consisting of the products of
the components of �. Additionally, it is convenient to apply a gauge transformation in order
to make the determinants of the matrices L,M constant and the matrix A traceless. In this way
we come to the following matrices which define, as can be easily verified, the zero curvature
representation for the lattice (4) at a = 0 and its Bäcklund transformation:

Ln =

⎛
⎜⎜⎝

0 0 1

0 −1 λ
vn

1 − 2λ
vn

λ2

v2
n

⎞
⎟⎟⎠ , Mn =

⎛
⎜⎜⎜⎝

λ2

μ2f 2
n

− 2λ
μfn

1

λ
μfn

−1 − λ2

μ2
λfn

μ

1 − 2λfn

μ

λ2f 2
n

μ2

⎞
⎟⎟⎟⎠ ,

An = λ

⎛
⎜⎜⎝

−λ 2vn−1 0

−vn 0 vn−1

0 −2vn λ

⎞
⎟⎟⎠ .

It is not difficult to find the matrices for the general case a �= 0, but they are more cumbersome.
Fortunately, we will not need them, since one of the vector lattices exists only in the case
a = 0 anyway (see section 6), and for the second one this assumption does not lead to the loss
of generality (see section 4).

The block matrices for the vector lattices are derived from here under the ‘proper’
interpretation of vn as a vector-valued quantity. To make notation more clear we write
vectors in the upper case. We assume that the vector space is equipped with a symmetric
scalar product 〈U,V 〉 = 〈V,U 〉. The identity operator is denoted by I and the linear form
V �, inverse vector V −1 and operator UV � are defined as follows:

V �(U) = 〈V,U 〉, V −1 = V

〈V, V 〉 UV �(W) = U〈V,W 〉.

In the case of finite-dimensional Euclidean space one can think of V as the column vector and
of V � as the row vector.

The first vector analog of the lattice (4) exists only at a = 0. It is of the form [6]

Vn,x = 2〈Vn, Vn+1 − Vn−1〉Vn − 〈Vn, Vn〉(Vn+1 − Vn−1). (14)

This lattice appears as the compatibility condition for the linear systems

T

⎛
⎝ψn−1

�n

ψn

⎞
⎠ =

⎛
⎜⎝

0 0 1
0 −I λV −1

n

1 −2λ
(
V −1

n

)�
λ2/〈Vn, Vn〉

⎞
⎟⎠

⎛
⎝ψn−1

�n

ψn

⎞
⎠ , (15)

Dx

⎛
⎝ψn−1

�n

ψn

⎞
⎠ = λ

⎛
⎝ −λ 2V �

n−1 0
−Vn 0 Vn−1

0 −2V �
n λ

⎞
⎠

⎛
⎝ψn−1

�n

ψn

⎞
⎠ . (16)

Note that the systems (15) and (16) possess the first integral in common

J = 〈�n,�n〉 − ψnψn−1, (T − 1)(J ) = Dx(J ) = 0. (17)

6
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The Darboux transformation is defined by a particular solution at the zero level of this first
integral.

Statement 1. Let Fn = �n/φn where ψ = φ,� = � is a particular solution of the linear
systems (15) and (16) at λ = μ and at J = 0. Then the transformation⎛
⎜⎝

ψ̃n−1

�̃n

ψ̃n

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

λ2

μ2〈Fn,Fn〉 − 2λ
μ

(
F−1

n

)�
1

λ
μ
F−1

n

(
λ2

μ2 − 1
)
I − 2λ2

μ2 F−1
n F�

n
λ
μ
Fn

1 − 2λ
μ

F�
n

λ2

μ2 〈Fn, Fn〉

⎞
⎟⎟⎟⎠

⎛
⎜⎝

ψn−1

�n

ψn

⎞
⎟⎠ (18)

maps the general solution of these systems into the solution of the systems of the same form,
with the original and transformed potentials related by the equations

μV −1
n = Fn + F−1

n+1, μṼ −1
n = Fn+1 + F−1

n . (19)

The expanded form of relations (19) is

Vn = μ
Fn+1 + 〈Fn+1, Fn+1〉Fn

1 + 2〈Fn, Fn+1〉 + 〈Fn, Fn〉〈Fn+1, Fn+1〉 ,

Ṽn = μ
Fn + 〈Fn, Fn〉Fn+1

1 + 2〈Fn, Fn+1〉 + 〈Fn, Fn〉〈Fn+1, Fn+1〉 .
(20)

Each of these transformations is the substitution into the lattice (14) from the lattice

Fn,x = μ2(Fn−1 + F−1
n

)−1 − μ2(Fn+1 + F−1
n

)−1
.

It is easy to see that these formulae turn into (7) and (9) in the scalar case at a = 0.
The derivation of the nonlinear superposition principle is not more difficult than in the

scalar case. The following Yang–Baxter mapping (cf equation 10 at a = 0) can be obtained
by multiplying the matrices M of the form (18):

F (j,k,σ )
n = R

(
F (j,σ )

n , F (k,σ )
n ;μ(j), μ(k)

)
, F (k,j,σ )

n = R
(
F (k,σ )

n , F (j,σ )
n ;μ(k), μ(j)

)
,

R(F,G;μ, ν) = (μ2 − ν2)〈G,G〉F + μ(ν〈F,F 〉 − 2μ〈F,G〉 + ν〈G,G〉)G
〈G,G〉〈νF − μG, νF − μG〉 .

(21)

It is possible to obtain the analog of equation (11), too. Let us introduce the new vector
variable Zn according to the formulae

Fn = μ(Z̃n − Zn−1), V −1
n = Zn+1 − Zn−1.

Equations (19) become equivalent to the single equation

Z̃n+1 − Zn = μ−2(Zn+1 − Z̃n)
−1

under this change. Next, consider the Darboux transformation corresponding to the spectral
value λ = ν:

Ẑn+1 − Zn = ν−2(Zn+1 − Ẑn)
−1.

The direct calculation shows that the repeated Darboux transformations coincide: ˆ̃Zn = ˜̂Zn

and moreover, the result is given by the equation

ˆ̃Zn − Zn = (μ−2 − ν−2)(Ẑn − Z̃n)
−1.

Iterations of the Darboux transformation are governed by the 3D-consistent discrete equation
on the square grid (the subscript n is dummy):

Z(j+1,k+1)
n − Z(j,k)

n = ((μ(j))−2 − (ν(k))−2)
(
Z(j,k+1)

n − Z(j+1,k)
n

)−1
.

7
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Figure 2. A soliton of the lattice (14); C = (1, 0), K = (0, 1), γ = 2, c1 = 1, c3 = −1.

This equation with important applications in the discrete geometry was introduced in [19] (a
special reduction was considered in [22]), see also [20, 21].

Let us make use of Darboux transformation for the construction of the soliton solution.
The solution of the linear equations (15) and (16) with constant coefficients Vn = C =
const, 〈C,C〉 = 1, at λ = μ reads

φn = c1γ
n e(γ−γ −1)x + c2γ

−n e(γ −1−γ )x + 2c3,

�n = (−1)nK + μ

(
c1γ

n

1 + γ
e(γ−γ −1)x +

c2γ
−n

1 + γ −1
e(γ −1−γ )x + c3

)
C, (22)

μ2 = γ + 2 + γ −1, 〈C,K〉 = 0, γ 〈K,K〉 = (1 − γ )2(c1c2 − c2
3

)
(the latter relation is equivalent to the constraint J = 0; and we do not consider the cases of
multiple eigenvalues μ = 0, μ = ±2). Equations (19) bring, after elementary transformations,
to the one-soliton solution of the lattice (figure 2)

Ṽn = φn+1�n + φn−1�n+1

μφ2
n

.

Clearly, this solution always lies in the plane of the vectors C,K , that is it is actually a
2-component, independently of the dimension of the vector space under consideration. The
C-component is a soliton on the unit background. Its shape is slightly different for positive
and negative values of c3. The K-component has localized oscillations on the zero background
which originate from the powers of −1 in the solution (22). In contrast to the scalar case
at a = 0, the additional dimension also makes possible the breathers corresponding to the
complex conjugated discrete spectrum (figure 3). The N-soliton solution is constructed by
applying the map (21) to the vectors F

(j)
n = �

(j)
n

/
φ

(j)
n where

(
φ

(j)
n ,�

(j)
n

)
are solutions of the
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Figure 3. A breather of the lattice (14); C = (1, 0), K = (0, 1), γ (1) = γ̄ (2) = 0.5 + i, c
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form (22) corresponding to the values of parameters γ (j), c
(j)

1 , c
(j)

3 and K(j), j = 1, . . . , N .
This solution evolves in the space spanned over the vectors C,K(1), . . . , K(N).

4. Second vector generalization

The lattice

Un,x = (〈Un,Un〉 + a)(Un+1 − Un−1) (23)

is, in contrast to (14), integrable at an arbitrary value of parameter a though it turns out to be
not so important as in the scalar case. Indeed, it can easily be eliminated or, more precisely,
‘confined inside the lattice’ at the expense of increasing by 1 the dimension of the vector
space under consideration. This is done by means of the orthogonal complement: let Un be a
solution of the lattice (23) then the vector

Vn = Un + E, E = const, 〈Un,E〉 = 0, 〈E,E〉 = a (24)

(if a < 0 then a pseudoeuclidean scalar product is used) satisfies the lattice

Vn,x = 〈Vn, Vn〉(Vn+1 − Vn−1). (25)

This transformation does not lead to any problem when constructing solutions since the
reduction (24) is consistent with higher symmetries and Bäcklund transformation. On the
other hand, it essentially simplifies all formulae (cf e.g., equations (29) and (33)). The matrices
of the zero curvature representation become simpler as well.

The lattice (25) is the compatibility condition of the linear systems

T

⎛
⎝ψn−1

�n

ψn

⎞
⎠ =

⎛
⎜⎝

0 0 1

0 I − 2V −1
n V �

n λV −1
n

1 −2λ
(
V −1

n

)�
λ2/〈Vn, Vn〉

⎞
⎟⎠

⎛
⎝ψn−1

�n

ψn

⎞
⎠ , (26)

Dx

⎛
⎝ψn−1

�n

ψn

⎞
⎠ =

⎛
⎜⎝

−λ2 2λV �
n−1 0

−λVn 2VnV
�
n−1 − 2Vn−1V

�
n λVn−1

0 −2λV �
n λ2

⎞
⎟⎠

⎛
⎝ψn−1

�n

ψn

⎞
⎠ . (27)

These systems possess the first integral (17) in common, as in the previous case.
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Statement 2. Let Fn = �n/φn where ψ = φ,� = � is a particular solution of the linear
systems (26) and (27) at λ = μ and such that J = 〈�n,�n〉−φnφn−1 = 0. Then the transform⎛
⎜⎝

ψ̃n−1

�̃n

ψ̃n

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

λ2

μ2〈Fn,Fn〉 − 2λ
μ

(
F−1

n

)�
1

λ
μ
F−1

n

(
1 − λ2

μ2

)
I − 2F−1

n F�
n

λ
μ
Fn

1 − 2λ
μ

F�
n

λ2

μ2 〈Fn, Fn〉

⎞
⎟⎟⎟⎠

⎛
⎜⎝

ψn−1

�n

ψn

⎞
⎟⎠ (28)

maps the general solution of these systems into the solution of the systems of the same kind,
with the original and transformed potentials related by the equations

Vn = μ
Fn+1 − 〈Fn+1, Fn+1〉Fn

1 − 〈Fn, Fn〉〈Fn+1, Fn+1〉 , Ṽn = μ
Fn − 〈Fn, Fn〉Fn+1

1 − 〈Fn, Fn〉〈Fn+1, Fn+1〉 . (29)

In comparison with the previous section, equations (29) are slightly shorter than (20), but
the analog of the lattice (9) is more cumbersome:

Fn,x = μ2〈Fn, Fn〉
((

Fn − F−1
n−1

)−1 − (
Fn − F−1

n+1

)−1)〈(
Fn − F−1

n−1

)−1
, Fn + F−1

n−1

〉〈(
Fn − F−1

n+1

)−1
, Fn + F−1

n+1

〉 .
The superposition of Darboux transformations is defined by the Yang–Baxter map

F (j,k,σ )
n = R

(
F (j,σ )

n , F (k,σ )
n ;μ(j), μ(k)

)
, F (k,j,σ )

n = R
(
F (k,σ )

n , F (j,σ )
n ;μ(k), μ(j)

)
,

R(F,G;μ, ν) = (ν2 − μ2)〈G,G〉F + ν(μ〈F,F 〉 − 2ν〈F,G〉 + μ〈G,G〉)G
〈G,G〉〈νF − μG, νF − μG〉 .

(30)

Note that the formulae (21) and (30) coincide up to the permutation of μ and ν in the numerator.
Despite such similarity, an analog of equation (11) is probably lacking in this case.

Statement 3. The Darboux transformation is consistent with the reduction (24).

Proof. Let us apply the change Vn = Un + E,Fn = Hn + hnE, 〈Hn,E〉 = 0 to the
equations (29), with the scalar factor hn unknown for the moment:

Un + E = μ
Hn+1 + hn+1E − (〈Hn+1,Hn+1〉 + ah2

n+1

)
(Hn + hnE)

1 − (〈Hn,Hn〉 + ah2
n

)(〈Hn+1,Hn+1〉 + ah2
n+1

) ,

Ũn + E = μ
Hn + hnE − (〈Hn,Hn〉 + ah2

n

)
(Hn+1 + hn+1E)

1 − (〈Hn,Hn〉 + ah2
n

)(〈Hn+1,Hn+1〉 + ah2
n+1

) .

(31)

Collecting the coefficients of E yields the coupled algebraic equations for hn and hn+1. It is not
obvious beforehand that their solution is compatible with the shift in n. If this would not be
the case then the change Fn = Hn +hnE would be incorrect. However, the direct computation
proves that hn is defined by one and the same formula for all n as a solution of the quadratic
equation

ah2
n − μhn + 〈Hn,Hn〉 + 1 = 0, (32)

therefore the E-component is detached in the transformation (29). �

Statement 3 makes redundant the separate study of the case a �= 0. Nevertheless, all
formulae can be, in principle, rewritten for this case as well, moreover, their rational structure
can be preserved by the use of the stereographic projection for the quadric (32):

Hn = (ν2 − a)Fn

ν2 + a〈Fn, Fn〉 , hn = ν(1 + 〈Fn, Fn〉)
ν2 + a〈Fn, Fn〉 , μ = ν +

a

ν

10
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Figure 4. Solutions of the lattice (25) at C = (1, 0), K = (0, 1). Soliton: γ = 2, c1 = 1, c3 = −1;
breather: γ (1) = γ̄ (2) = 1 + 1.5i, c(1)
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(more rigorously, some other letter should be used here instead of F, but we hope it will
not lead to misunderstanding). For instance, the substitution into (31) brings, under this
parametrization, to the Bäcklund transformation for the lattice with parameter (23):

Un = (ν2 + a〈Fn, Fn〉)Fn+1 − (a + ν2〈Fn+1, Fn+1〉)Fn

ν(1 − 〈Fn, Fn〉〈Fn+1, Fn+1〉) ,

Ũn = (ν2 + a〈Fn+1, Fn+1〉)Fn − (a + ν2〈Fn, Fn〉)Fn+1

ν(1 − 〈Fn, Fn〉〈Fn+1, Fn+1〉) .

(33)

The Yang–Baxter map (30) can be rewritten in a more general form in a similar way. The
transformation (33) turns into (29) at a = 0, while in the scalar case we come back to the
transformation (7), under identifying U,F, ν with v, f, μ respectively.

It is not difficult to compute, by the use of (29), the one-soliton solution

Ṽn = μ
φn+1�n − φn−1�n+1

φn(φn+1 − φn−1)

where the solution φn,�n of equations (26) and (27) with constant coefficients is given by
almost the same formulae (22) as before, with the only difference being that the factor (−1)n

in front of K disappears. The construction of multisoliton and breather solutions is quite
analogous to the previous case.

The multisoliton solutions of the lattice (23) with a = 1 and Un → 0, n → ±∞ were
constructed in the paper [15] by the use of ISTM for a spectral problem associated with
matrices of 2d × 2d size where d is the dimension of the vector Un. These solutions give rise,
through the transformation (24), to some class of solutions of the lattice (25) with boundary
conditions 〈Vn, Vn〉 → 1, n → ±∞. On the other hand, statement 3 says that the form (24)

11
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can be preserved by the Darboux transformation (29) under the special reduction expressed
by equation (32). Therefore, Darboux transformations can be used for the construction of the
solutions of the lattice (23) with vanishing boundary conditions. The question naturally
arises regarding the equivalence of these solution classes. The difference between the
spectral problems makes the comparison of the results difficult, but the following simple
argument shows at least that there exist solutions which are not equivalent to those obtained
in [15].

The first two plots of the figure 4 suggest that the C- and K-components of the one-soliton
solution Vn = V C

n C + V K
n K are related by the constraint V C

n − 1 = αV K
n with some constant

α, and this is indeed the case, as one can check by direct computation. This allows to set
V C

n = 1 by the use of some orthogonal transformation, so that Vn is of the form (24) with
a = 1 and the one-dimensional vector Un. Effectively, this means that any one-soliton solution
of the lattice (25) is equivalent to one-soliton solution of the scalar lattice (23). However,
the generic two-soliton solution of the lattice (25) cannot be brought to the form (24) by any
orthogonal transform. This can easily be verified numerically: it is sufficient to check, at
random values of parameters, that the coefficients of the expansion of two-soliton solution
over the base C,K(1), K(2) are affine-linearly independent.

5. Higher symmetries and associated systems

Both vector lattices (14) and (25) belong to an infinite hierarchy of commuting flows. We
restrict ourselves by consideration of the simplest higher symmetries which are of the second
order with respect to the shift in n. In the scalar case one has, setting a = 0 for simplicity, the
pair of consistent lattices

vn,x = v2
n(vn+1 − vn−1), vn,t = v2

n

(
v2

n+1(vn+2 + vn) − v2
n−1(vn + vn−2)

)
. (34)

Obviously, the first of these equations can be solved with respect to vn+1 or vn−1, and this
allows us to express recursively all vj through the pair of variables u = vn+1, v = vn. After
this, the symmetry takes the form of Kaup–Newell evolution system

ut = uxx + (2u2v)x, vt = −vxx + (2uv2)x

and the shift in n defines an explicit auto-substitution for this system (the simplest type of
Bäcklund transforms).

The lattice (14) and its symmetry can be compactly written in the form preserving the
structure (34)

Vn,x = PVn
(Vn+1 − Vn−1), Vn,t = PVn

(PVn+1(Vn+2 + Vn) − PVn−1(Vn + Vn−2)) (35)

by the use of the operator PV (U) = 2〈V,U 〉V −〈V, V 〉U . It is easy to check that the identity
(PV )−1 = PV −1 is valid for this operator. Making use of it one can solve, like before, the
first equation with respect to Vn+1 or Vn−1 and express all Vj through the pair of variables
U = Vn+1, V = Vn. This brings the symmetry to the form of the vector generalization of the
Kaup–Newell system

Ut = Uxx + (4〈U,V 〉U − 2〈U,U〉V )x, Vt = −Vxx + (4〈U,V 〉V − 2〈V, V 〉U)x. (36)

Analogously, the commuting flows for the second vector lattice are

Vn,x = 〈Vn, Vn〉(Vn+1 − Vn−1),

Vn,t = 〈Vn, Vn〉
(〈Vn+1, Vn+1〉(Vn+2 − Vn) + 〈Vn−1, Vn−1〉(Vn − Vn−2)

+ 2(〈Vn+1, Vn〉 + 〈Vn, Vn−1〉)(Vn+1 − Vn−1)
)

(37)

12
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and the associated evolution system reads

Ut = Uxx + 4〈U,V 〉Ux + 2〈U,U〉Vx, Vt = −Vxx + 4〈U,V 〉Vx + 2〈V, V 〉Ux (38)

which is another vector analog of the Kaup–Newell system.
Another interesting type of associated systems is obtained for the scalar quantities

pn = 〈Vn, Vn〉, qn = 2〈Vn, Vn−1〉
which satisfy, in virtue of any of the pair (35) or (37) one and the same two-dimensional
modified Volterra lattice

pn,t + 2p2
n(pn+1 − pn−1) = pn

(
(qn+1 + qn)x + q2

n+1 − q2
n

)
, pn,x = pn(qn+1 − qn). (39)

It can be written in the form

pn,t + 2p2
n(pn+1 − pn−1) = (rnpn)x, (pn+1pn)x = pn+1pn(rn+1 − rn),

as well, where rn = qn+1 + qn = 2〈Vn, Vn+1 + Vn−1〉. These lattices are closely related to
Mikhailov lattices introduced in [25].

The lattices (35) and (37) can be effectively used for the construction of particular solutions
of the systems (36) and (38) and the lattice (39). Along with the construction method of the
soliton-type solutions described above, one can use to this end the periodic closure Vn+N = CVn

with orthogonal operator C which leads to the finite-dimensional dynamical systems.

6. Further vector analogs

Recall that the classification problem of scalar integrable lattices of Volterra type was solved
by Yamilov [27] within the symmetry approach. Recently, one of the authors has obtained
an analogous classification of the vector Volterra lattices on the sphere, that is under the
constraint 〈Vn, Vn〉 = 1 [32]. This constraint essentially simplifies the problem which is very
complicated and remains open for the case of free space. Other simplifying assumptions can
be used of course, for example the polynomiality of the lattice. It should be noted that in the
continuous case many polynomial equations are known; we mention only the papers [1–3]
which contain the examples and some classification results for the vector systems of derivative
nonlinear Schrödinger type, equations (36) and (38) being just two instances of such systems.
In the discrete case, however, the polynomiality is not a too natural assumption, as one can see
already from the Yamilov list of scalar lattices. In the vector setting we have not succeeded in
finding other polynomial Volterra-type lattices possessing higher symmetries aside from (14)
and (23).

Our search for integrable lattices was based on the straightforward method of
undetermined coefficients. In the simplest case the lattice and its symmetry are of the form

Vn,x = a(1)Vn+1 + a(0)Vn + a(−1)Vn−1, Vn,t = b(2)Vn+2 + · · · + b(−2)Vn−2

where the scalar coefficients a(i) are linear with respect to the scalar products of Vn+1, Vn, Vn−1

and b(i) are quadratic with respect to the scalar products of Vn+2, . . . , Vn−2. It is easy to find
that the homogeneous lattice contains 18 parameters and its symmetry contains 600 ones.
Calculating the cross derivatives yields a system of bilinear equations for the coefficients.
Although this system is very bulky, its solving is, in principle, not difficult since the equations
are very over determined and sparse (in particular, a large number of equations are monomial).
The answer is the consistent pairs of the lattices (35) and (37) (there are also few solutions
with a(1) = a(−1) = 0, but all such lattices can be reduced to the scalar ones and therefore they
are not of interest to us). Adding the lower degree terms to the lattice and its symmetry allows
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us to introduce the parameter a into the pair (37) and to prove that no such generalization
exists for the pair (35).

It is clear that the scope of this method in this problem is very much restricted. If one
takes the coefficients a(i) quadratic with respect to the scalar products and b(i) of the fourth
degree then the number of unknown parameters in the lattice and its symmetry becomes 63
and 15 300 respectively, and even the calculation of the commutator becomes a difficult task.
This case is still manageable, but with the empty answer.

We also have partially analyzed the case when the lattice is of the second order with
respect to the shift in n and its symmetry is of the fourth order, that is

Vn,x = a(2)Vn+2 + · · · + a(−2)Vn−2, Vn,t = b(4)Vn+4 + · · · + b(−4)Vn−4.

One may hope that some vector analogs of the Narita–Bogoyavlensky lattice [35–37] appear
here, more precisely, analogs of some its modification with odd degree of nonlinearity, for
example

vn,x = vn(vn+2vn+1 − vn−1vn−2) or vn,x = vn+1v
3
nvn−1(vn+2vn+1 − vn−1vn−2).

Note that classification of such lattices is not known even in the scalar case. Unfortunately,
the analogs of the Narita–Bogoyavlensky lattice have not been discovered; however we have
found two more lattices relative to the Volterra lattice:

Vn,x = 〈Vn, Vn〉(〈Vn+1, Vn+1〉(Vn+2 + Vn) − 〈Vn−1, Vn−1〉(Vn + Vn−2)), (40)

Vn,x = 〈Vn+1, Vn〉〈Vn, Vn−1〉(Vn+2 − Vn−2). (41)

Both lattices possess fourth order symmetries which we do not bring because of their length.
The study of these examples falls beyond the scope of our paper. We only notice that the
lattice (40) generalizes the second flow of the modified Volterra lattice (34), so that this flow
admits at least three vector analogs. The question of the number of vector analogs for the
higher flows of the hierarchy remains open. The lattice (41) in the scalar case is a modification
of the Volterra lattice on the ‘stretched’ grid:

vn,x = vn+1v
2
nvn−1(vn+2 − vn−2)

un=vn+2vn+1vnvn−1−−−−−−−−−−−→ un,x = un(un+2 − un−2),

but in the vector case this substitution makes no sense and the lattice (41) seems to be an
independent object. The zero curvature representations and Bäcklund transformations for the
lattices (40) and (41) are not known for now.

Summing up, we may say that the classification of the polynomial lattices of Volterra
and Narita–Bogoyavlensky types is a very difficult open problem, probably with very scarce
answers. The alternative approaches to the method of undetermined coefficients are the
analysis of the necessary integrability conditions in the form of canonical conservation laws
[27–29] and the perturbative approach [38], however the contemporary state of the theory does
not allow us to effectively apply them, even in the scalar case.
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